Maximal supports and Schur-positivity among connected skew shapes

نویسندگان

  • Peter R. W. McNamara
  • Stephanie van Willigenburg
چکیده

The Schur-positivity order on skew shapes is defined by B ≤ A if the difference sA − sB is Schur-positive. It is an open problem to determine those connected skew shapes that are maximal with respect to this ordering. A strong necessary condition for the Schur-positivity of sA−sB is that the support of B is contained in that of A, where the support of B is defined to be the set of partitions λ for which sλ appears in the Schur expansion of sB . We show that to determine the maximal connected skew shapes in the Schur-positivity order and this support containment order, it suffices to consider a special class of ribbon shapes. We explicitly determine the support for these ribbon shapes, thereby determining the maximal connected skew shapes in the support containment order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necessary Conditions for Schur-maximality

McNamara and Pylyavskyy conjectured precisely which connected skew shapes are maximal in the Schur-positivity order, which says that B ≤s A if sA − sB is Schurpositive. Towards this, McNamara and van Willigenburg proved that it suffices to study equitable ribbons, namely ribbons whose row lengths are all of length a or (a+ 1) for a ≥ 2. In this paper we confirm the conjecture of McNamara and Py...

متن کامل

Necessary Conditions for Schur-positivity

In recent years, there has been considerable interest in showing that certain conditions on skew shapes A and B are sufficient for the difference sA − sB of their skew Schur functions to be Schur-positive. We determine necessary conditions for the difference to be Schur-positive. Our conditions are motivated by those of Reiner, Shaw and van Willigenburg that are necessary for sA = sB , and we d...

متن کامل

Positivity Questions for Cylindric Skew Schur Functions

Recent work of A. Postnikov shows that cylindric skew Schur functions, which are a generalisation of skew Schur functions, have a strong connection with a problem of considerable current interest: that of finding a combinatorial proof of the non-negativity of the 3-point Gromov-Witten invariants. After explaining this motivation, we study cylindric skew Schur functions from the point of view of...

متن کامل

Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes

Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validi...

متن کامل

. C O ] 1 4 Se p 20 05 SCHUR POSITIVITY AND SCHUR LOG - CONCAVITY

We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. We include an alternative derivation of this result directly from Haiman’s work on Schur positive immanants. Our results imply an intriguing log-concavity propert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012